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The flow due to a slender ship moving over 
a wavy wall in shallow water 
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SUMMARY 
The problem under investigation is the unsteady subcritical potential flow generated by a slender ship 
translating over a wavy wall in shallow water. The method of matched asymptotic expansions is used to take 
advantage of the simplified governing equations in the near and far fields. The vertical force and pitching 
moment coefficients are calculated as functions of the reduced frequency and Froude number with a view 
towards possible application to ship safety considerations. 

1. Introduction 

For  primarily safety-related considerations, there has been much recent interest in the 
problem of ship motions in restricted waters. This has given rise to a number of studies 
of shallow-water potential flows. The method of matched asymptotic expansions has 
proven to be invaluable in these analytical efforts. It first appeared in this role in the litera- 
ture in a paper by Tuck [1] which analyzed the steady longitudinal flow past a slender ship 
in constant-depth shallow water. Slender-body theory was used to describe the flow field 
in the inner region near the ship and shallow-water theory provided the outer region 
description. Other steady constant-depth solutions include the motion of a slender ship 
along the center of a constant width rectangular channel by Tuck [2] and the lateral flow 
past a slender ship by Newman [3]. Tuck [4, 5] also considered unsteady constant-depth 

solutions relating to ship motions. 
Plotkin [6] made a first attempt at studying the effect of variable water depth in the 

shallow-water hydrodynamics regime by considering the steady flow past an anchored 
slender ship in the presence of  a slender bump. Beck, Newman and Tuck [7] treated the 
steady flow of a slender ship moving down the center of a dredged channel. 

In this paper, the unsteady potential flow due to a slender ship translating past a wavy 
wall in shallow water is analyzed. 

2. Problem formulation 

Two Cartesian coordinate systems are introduced as shown in Figure 1. The primed system 
is fixed in space, with z' measured upwards from the undisturbed position of the free surface. 
The ship is translating with constant speed U in the negative x'  direction. In this system, 

the ship is described by 
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Figure 1. Coordinate system. 

A.  P lo tk in  

y '  - e f ' ( x ' ,  z ' ,  t') = 0. (2.1) 

The bottom is given by 

z '  + h ' (x ' ,  y') = 0, (2.2) 

and the free surface is given by 

z'  - ~'(x' ,  y ' ,  t ')  = 0. (2 .3)  

The flow is assumed to be irrotational which leads to the representation of the velocity as 
the positive gradient of a velocity potential 49'(x', y ' ,  z ' ,  t ' ) .  Since the flow is also incom- 
pressible, the velocity potential must satisfy Laplace's equation 

~b', x, + ~b' + ~b'z, z, = 0 (2.4) y~t 

in the fluid domain. 
The kinematic boundary condition on the ship surface for this inviscid flow requires that 

the body be a flow streamline or 

aft', + er~',f~, + ~q~'z,f', - ~b' = 0, on y' = ef'. (2.5) y" 

The kinematic bottom condition is 

qS' z, + q~,,h'~, + q~'y,h',, = 0, on z' = - h ' .  (2.6) 

The free surface must also be a streamline of the flow or 

~;, + q~',n', + ~ ' , , ~ ' , , -  ~'~, = o,  o n  z'  = ~'. (2 .7)  

The free surface also satisfies a dynamic boundary condition that the pressure is constant 
at its ambient value. Bernoulli's equation then takes the form 

~b~, + (~b') + ~b'y? + q~'~2)/2 + OZ' = 0, on z' = r/', (2.8) 

where 9 is the gravitational acceleration. 
The unprimed coordinate system moves with the ship, with the origin at midship. The 

two coordinate systems are related by the transformation 

x '  = x -  Ut,  y '  = y ,  z '  = z, t '  = t. (2.9) 
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In the unprimed system, the differential equation and boundary conditions become 

qbxx + Cry + Czz = 0, in fluid domain, (2.10) 

eVfx + 8~xfx + 8~zfz - ~,  = 0, on y = 8f, (2.11) 

~,  + ~xhx + ~byhy = O, on z = - h ,  (2.12) 

I~t "~ U?]x "3t" ~ x q x  "~- ~y/']y - -  (]~z = 0, on z = r/, (2.13) 

gPt + V(gx + (~b~ + q~2 (2.14) + + # z  = o ,  o n  z = 

It is noted that f ( x ,  y) = f ' ( x  - Ut, y, t) is independent of time in this system and that 
the bottom description is now time dependent with h(x, y, t) = h'(x - Ut, y). 

The ship is slender which means that the beam and draft are small, O(8), with respect 
to the length 2L 8 is the slenderness parameter and the hull description in equation (2.1) 
reflects the ordering. In the region near the ship, the inner region, the approximations of 
slender-ship theory apply. For the approximations of shallow-water theory to apply in 
the region far from the ship, the outer region, it is assumed that the water depth is of the 
same order as the draft, or h = O(e). Also, the Froude number based on depth, F = 
= U/(gh) ~, is O(1). This implies that the conventional Froude number based on l is small, 

The method of matched asymptotic expansions is used to define the mathematical 
problems in the inner and outer regions following Tuck [1]. 

3. The outer expansion 

The outer region, far from the ship, is defined by the following order of magnitude of the 
coordinates with respect to ship length. 

x, y = O(1), z = O(e). (3.1) 

It is assumed that the velocity potential can be expanded in an asymptotic series in 8 of 
the form 

(~ = 8(/) (1) -It" 8 2 ~  (2) "]- 83q~ (3) "[- 8 4 ~  (4) "Jr" . . . .  (3.2) 

Introduce the outer variable 

Z = z/e, (3.3) 

and denote the two-dimensional Laplacian by 

V z = 02/dx ~ + aZ/ay z. (3.4) 

Substitution of the above into Laplace's equation (2.10) yields 

q5 1) O, .t(2)= O, _~(3) _V2q~(1), .~(4) _VZ~(z).  (3.5) ZZ = q) ZZ q) ZZ = ~ ZZ 

The bottom boundary condition (2.12) becomes 

~ b ( z l ) ( - h )  = 0,  q~(z2) ( -h)  = 0,  q~(z3) ( -h)  = - h x ~ ( x l ) / 8  - hy(OO)/8, 

" "(2)/8 (3.6) = - h , 9 ,  , .  
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Equations (3.5) are integrated once with respect to Z and using equations (3.6), we get 

~b (1) = q~(1)(x, y, t), q~(2) = r y, t), 

~b(z 3) = -ZV2q~(1) _ hVZdp(1)/e - h~q~(xl)/e - hSp~!)/e,  

q~(z r = - Z V 2 ~  (2) - hV2~(2) /e  - hxq~(x2)/e - hyp~z)/e.  (3.7) 

Substitute equations (3.7) into the dynamic free-surface condition (2.14) to get 

- g ~  = e~b} !) + ~U~b (1) + eZ~b} 2) + e2UqS(~ 2) + ez[~b(~ ')2 + ~b(yl)Z]/2 + O(ea). (3.8) 

Since F = O(1), UZ/g = O(e)  and therefore t/ = O(e2). Let 

r / =  e2r/(z) + ~3~/(3) + . . . .  (3.9) 

and from (3.8), 

= _ 

r / ca )  _- _ [q~2) + UqS(~) + (~b(1)z + ~a~)2)/2]/ge. (3.10) 

If  equations (3.7) and (3.10) are now substituted into the kinematic free-surface condition 
(2.13), the differential equations for q~(1) and q5 (2) are 

�9 *(1) __ [/2a~(1) ghV2q ~(1) + g h x r  (1) + glzrq~r - ~~ ) - -~'rxtg''h(1) -- ~-~ = 0 

and 

g h V 2 r  (2) + + ghyr - - _ 

= [q~l) + Uq~(1)]Vzq~(1) + ~t~-~?r'h(1)'h(1)~t q- wyA'(1)'h(1)"gyt "[-~-'WxlTdJl)A(1)'rxx +--'rytf~(1)d~(1)]'rxy ~. (3.11) 

The preceding derivation follows very closely the analogous treatment of  the constant- 
depth case by Tuck [1]. 

It is now assumed that  the bot tom location varies f rom its mean position by an amount  
of  0(5), where 5 is a small parameter:  

h' = ho -Jr 5h'~(x',  y ' ) .  

The bot tom variation is taken to be in the shape of  a wavy wall of  wave number k and if 
the frequency 09 = k U  is introduced, the description of  the bot tom in the ship-fixed 
system is 

h = ho[1 + 5a cos og(x /U - t)] = h o + 5 h i ( x ,  t) .  (3.12) 

The velocity potentials ~b (i) and r are now expanded in series in 5 

q~(1) = r + 5r + O02),  

and 

~b (2) = ~b (21) + 5q5 (22) + 0(52). (3.13) 

and therefore the outer velocity potential is 

(~ = 84  (11) -[- B5~ (12) "F" B2(~(21) -F 0 (e25 ,  B52). (3.14) 

In this study, the terms ~b (11) and q5 (12) will be obtained which will give us the largest 
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correction to the constant-depth result due to variable water depth. It is noted that the 
contribution to the forces and moments from the term q5 (2~) may be comparable to those 
from ~.b ~ but that this contribution is independent of depth variation and is obtained 
formally by Tuck [1]. 

Equations (3.12 and 3.14) are substituted into equation (3.10) to yield the following 
equations for ~b (~) and ~b (~2) 

(i r 2 ] t L ( 1  1) t "/)(11) 0 (3.15) 
- -  "~t O . l W x x  + "r y y  

and 

(1 - ;2~(12) ~(12)  ck}~2~/gho (12) = ~ ( m  -oJ~'x~ + ~-yy - - 2U(gxt /gho -hl~qS~il)/ho - hlFoqS~ /ho, 

(3.16) 
where F 2 = UZ/gho, the Froude number based on mean depth. 

To an observer in the outer region, as e --+ 0 the beam of the ship vanishes while the 
draft remains finite so that the ship appears to have collapsed onto the plane y = 0. We 
therefore seek solutions to equations (3.15-3.16) which are analytic everywhere with the 
possible exception of y = 0. It is noted that these equations are similar to those appearing 
in linearized subsonic aerodynamics and they will be solved using Green's function (source) 
distributions. The solution to equation (3.15) is 

(oO1) =foo G~  x -  ~,Y)A~ (3.17) 
d -  oo 

where 

G(m(x ,  y) = (2nfl)-~ log(x 2 + fl2yZ)*= (3.18) 

is the unit source potential and f12 = 1 - F~. A~ is the still unknown source strength. 
To solve equation (3.16) it is convenient to use complex variables. Let 

~b~ y, t) = ~[~~ y)e-i'~ (3.19) 

and note that h~ = hoa~[e ~,~/v e-~'~ Upon substitution of these results into (3.16), the 
following equation for q5o2) is obtained: 

f l 2 ~ ) ( 1 2 )  r  = 1t72 .h( l  1)-i , ' ~  + ~'rr + ~ + 2U~ c2 -aei~ + ~o,y~,x J 

(320) 

where c z = gho, the square of the mean-depth shallow-water wave speed. The Green's 
function source potential for this equation is given in Robinson and Laurmann [8] as 

G~ y) = i(4fl) -1 e-i~ + flZyZ)~/cfl2] (3.21) 

where H(o z) is a Hankel function. The solution to equation (3,20) can now be written as 

8 ( ~ )  = - 4, y ) a ~  

f ?  f ?  ~ " "  -(,~, _ 
- aei'~ + Fo~,x (~,~)]G (x - ~,y ~)d~doc (3.22) 

OO 00 

where .~(12)(x) is the still unknown source strength. 
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212 A. Plotkin 

4. The inner expansion 

The inner region, in the neighborhood of the ship, is defined by the following order of 
magnitude of the coordinates with respect to the ship length 

x = O(1), y, z = 0(5). (4.1) 

It is assumed that the velocity potential can be expanded in an asymptotic series in e of 
the form 

4~ = e~(1) + e2~(2) + . . . .  (4.2) 

The inner variables Y and Z are defined as 

Y = y/z, Z = z/~. (4.3) 

Equations (4.2-4.3) are substituted into Laplace's equation to yield 

(~(i) ..~ r = O, d~(2) -[- ~ ~--- O. (4.4) 
yu  x- ZZ ~r. y y  -~ ZZ 

It is seen that both 4 ~(1) and ~(2) satisfy a two-dimensional Laplace equation in the cross- 
flow plane. 

Conventional slender-body theory yields the hull boundary conditions 

= ' 2 ,  Y = f ,  (4.5) ~1)  = 0, ~(ff) Ufx/(1 + f } )  , on 

where N is the normal in the cross-flow plane expressed in inner variables. There has been 
considerable discussion concerning the appropriate free-surface condition. Tuck [4, 5] uses 
the rigid-wall condition. Ogilvie and Tuck [9], in their consideration of ship motions in 
deep water, generate a free-surface condition which allows for waves in the inner region 
by allowing the frequency to become large. It is assumed here that the wave length of the 
bottom variation is of the order of the ship length or o~L/U = O(1). The ordering in the 
inner region then requires that the rigid-waU condition be satisfied 

r ~) = 0, @(z 2) = 0, on Z = 0. (4.6) 

To obtain the boundary condition on the bottom, first substitute equations (4.2-4.3) into 
equation (2.12). Then introduce the bottom description (3.12) and expand the resulting 
equation about the mean position Z = -ho/e. Keeping terms linear in 6, we get 

- = - 6hl~ozz ~ = 0, on Z = -ho le .  (4.7) 

Now, let 

(~i(I) ~--- (~(11) _~_ 6(~(12) ._~ O ( 6 2 ) .  (4.8) 

@(~1) and 4 ~~ each satisfy Laplace's equation in the Y -  Z plane with zero normal deriva- 
tives on all boundaries in this plane. Therefore, 

4~ (1) = r + 5~(x2)(x, t). (4.9) 

Now consider the problem for ~(2). The solution can be written as 

~(2) = f ( x ,  t) + qb(21)(Y, Z, t; x) + 6qb(22)(Y, Z, t; x) (4.10) 
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Figure 2. Inner region flowfield. 

lo/e 

where f (x,  t) is arbitrary. ~(21) and ~0 (2z) are uniquely defined if suitable boundary con- 
ditions at infinity are specified. Figure 2 shows a schematic of the inner region flowfield. 
For  a hull symmetric with respect to the plane Y = 0, it seems reasonable to assume that 

~i ~(21) ~ R I ( x ) [ Y [  -~ O(1), ~(22) _.+ H2(X ' t)]Y[ + o(1) (4.11) 

as [Y[ -> oo where ul and u2 are determinable from conservation of  mass. 
The volume flux leaving the hull at x is 

f ~,~i)ds = USx(x) 

where the integral is taken around the wetted hull cross-section and e2S(x) is the area of 
that section below the plane Z = 0 ([1]). The volume flux leaving the bottom is 

f: ~(22)dy = - 6 h l  O)(r2r~) dY/e = - 26hlu~/g. 
oo - o o  

Since half of  the volume flux is channeled in each direction as Y - ,  + 0% we have 

ul = UeSx(x)/2ho, u2 = - UeS:,(x)hl/2h~. (4.12) 

5. Matching 

To determine the unknown functions A(ll)(x), A(lZ)(x), ~(H)(x) and r t) the inner 

and outer expansions must be matched. The following matching principle from Van Dyke 
[10] is used: 

,,The m-term inner expansion of the (n-term outer expansion) = 
the n-term outer expansion of  the (m-term inner expansion) (5.1) 

Take m = 2 and n = 1. The one-term outer expansion is 

It has a two-term inner expansion of  

er o) + ~lyl r o + )  + ea+e-'~ o) + lylgCviZ)Cx, o+)1 

= eqS(m(x, o) + +lYlA(**)(x)/2 + ~6++e-+~ o) + lYl+~(IZ)(x)/2]. (5.2) 
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214 A. Plotkin 

The two-term inner expansion is 

e@(i~) + ~5@(12) + ezf + ez@(zl) + ~a6~(22)" 

It has a one-term expansion of 

~(11) + ~6~(lz) + ~lylul + eflyluz. (5.3) 

By equating equation (5.3) to equation (5.2) and using equation (4.12), the results of the 
matching are obtained as 

~ ( m  = 4(~) (x ,  o), e(~2) = ~ [e -~ ,~ (12 ) (x ,  o)] 

A01) = UeS~(x)h ~ 1, g(Iz) = _ Uaeh ~ 1Sx(x) e~,O~/v (5.4) 

The first-order velocity potential in the inner region is 

= Ue(2zcflho) -~ f "  S~(~) log lx - -  ~[d~ ~ - ~  

al- l 
- a6(4/~)- 1Nie-U~ io~ro~/~r 

{ • Ueho 1 d~e/cr~ _ ~l/cfl2)d~ 
-I 

+ e "~162176 [io~(Foc)-~m(r ~) + -o~-, ,  ,~, ~)] 
O0 OO 

• Hp~[~o((x-  4) 2 + ~2fl2)~/cB2]d~d~} 

where 

f' (o(m(~, ~) = Ve(2~flho) -1 S~(~o) log[(~ - 40) 2 + flaae]~d~ o. 
-l 

(5.5) 

6. Inner expansion of pressure and forces 

To first order in e, the hydrodynamic pressure is obtained from the linearized Bernoulli 
equation as 

P = - P ( 4 t  + Ugox) (6.1) 

where p is the fluid density and ~b is given in equation (5.5). Using equations (3.17-3.22, 
4.8-4.9, 5.4), the pressure is 

p = -pUe~(~x')(x, o) - peS~e- i~ o) + U~212)(x, o)l. (6.2) 

As in the constant-depth case [1], to this order the pressure is a function of x and t. It 
measures only the interaction between cross-sections as is evidenced by the integral repre- 
sentation of ~b (I~) and ~(12). There is no dependence on the cross-section shape--the only 
hull geometry needed is the slope of the cross-sectional area curve Sx(x). 

The vertical force, positive upwards, is given by Tuck [1] as j" 
L = p(x )B(x )dx  (6.3) 

- l  
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where B(x) is the width of  the cross-section at the waterline. An integration by parts yields 

L = pg~ r o)B~(x)dx 
- l  

+ p ~ e  -'~ [/coB(x) + u~x(x)]~(12~(x, o)dx. (6.4) 
- l  

The first term is the mean-depth contribution to the force and is 

L[~ = o = PUZe2(2zcflho)- 1 S~(r log Ix - 41 d~dx (6.5) 
- l  I 

which has been obtained by Tuck [1]. 
The trim moment about the y-axis, positive clockwise, is 

_ f l  xp(x)B(x)dx. (6.6) M =  
al- l 

The counterpart of  equation (6.4) is 

M =  - p U f f "  r  o)(xB)xdx 
.1- l 

--p~6~e -~~ [icoxB + U(Bx)~]r o)dx. (6.7) 
- I  

The mean-depth contribution to the moment is 

Ml~=o = -PU%Z(2rcflho) -1 S~(O(xB)~ loglx - ~[d~dx. (6.8) 
--t  l 

Non-dimensional force and moment coefficients can be defined as 

L M 
C L -  �89 2 , CM--�89 (6.9) 

7. Sample problem 

Consider a hull of  revolution with a parabolic waterline. The width and cross-sectional 
area are given by 

B(x) = 2eBo(1 - x2/l 2) 

and 

eZS(x) = ~zB2/8. (7.1) 

The mean-depth contributions to the force and moment, equations (6.5 and 6.8), are 

L]~= ~ = _ 16pU2e3B3o(9flho)- 1, M[~= ~ = 0. (7.2) 

The unsteady contributions to the force and moment may now be calculated from equations 
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(6.4 and 6.7). Using equation (6.9), we write 

CL = _ 8g3B3(9flho12)- 1 + ~ [e- i~176 ] 

and 

CM = ~[e-U~ i~ (7.3) 

where the unsteady force and moment coefficients are written in exponential form. These 
coefficients depend basically on two non-dimensional parameters; the Froude number F o, 
and the reduced frequency, o9l/c, which is equal to rc times the ratio of ship length to wave 
length. The coefficients are obtained by numerical integration using the Gaussian qua- 
drature formulas in Stroud and Secrest [11]. Legendre polynomials are used for the stream- 
wise integration and Laguerre polynomials for the transverse integration. 

The theory requires that Fo = 0(1) and only subcritical flow is considered. The theory 
becomes invalid as the Froude number approaches one since the ordering of terms in the 
outer-region equations must be reconsidered. To study the effect of Froude number varia- 
tion, the coefficients have been calculated for Fo = .5, .7 and .9. To insure that changes in 
the streamwise direction are of the order of the ship length so that slender-body theory is 
applicable in the inner region, it has been assumed that ~ol/c = 0(1). The theory should 
then apply in the low-frequency limit but should be invalid as o91/c --+ ~ .  

Consider the limiting case o~I/c --> O. In this limit hi becomes constant and therefore 
h = ho + 6hl  is also constant. Equation (3.10) reduces to 

(1 - F2~,b (~) + ,b (~) = 0 (7.4) F ' i "  X ~  7"  y y  

and the solutions for the force and moment are obtained by replacing F o by F in equations 
(6.4 and 6.8), respectively. An expansion of these results for small 6 yields 

{ (~h~I 1 F 2 1/LI'=~ L[,o~/c=o = 1 - 1 + (7.5) 
MIo~/c=o h 0 2 1 - F~._I)MIt= o 

The solution technique of this paper, developed for a time-dependent h~, linearizes equation 
(3.10) so that the (5 dependence is contained in equation (3.16). 

The unsteady force coefficient magnitude R L is presented as a function of reduced 
frequency o9l/c in Figure 3. The value of RL from equation (7.5), the "exact" first order 
limit for ~ol/c --> O, is also shown. The agreement at this limit is excellent. The curves all 
exhibit peaks in the low-frequency range with the magnitude of the peaks increasing 
monotonically with Froude number. It is interesting to note that the peaks occur at rather 
large values of the ratio of wave length to ship length, greater than 2z for the cases con- 
sidered. The unsteady force coefficient argument is shown in Figure 4. In the limit as 
oI / c  --> O, OL --," O. 

The unsteady moment coefficient magnitude R M is displayed in Figure 5. It is seen that 
the curves resemble those for the force coefficient with the peaks shifted somewhat to 
higher values of frequency. The correct limit RM = 0 is approached for c, ol/c = 0. The 
unsteady moment coefficient argument 0~r is shown in Figure 6. In the limit <,ol/c --+ O, 

it is noted that 0 M ---> re/2. 
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Figure 3. Magnitude of unsteady vertical force coefficient for ship with parabolic waterline of beam 2eBo, 
half-length I, in water of mean depth ho, plotted against reduced frequency colic = ~ (ship length/wave length). 
Figure 4. Argument of unsteady vertical force coefficient under the same conditions as Figure 3. 
Figure 5. Magnitude of unsteady pitching moment coefficient under the same conditions as Figure 3. 
Figure 6. Argument of unsteady pitching moment coefficient under the same conditions as Figure 3. 
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